Optimization of nested step designs
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SUMMARY

The number of treatments in a balanced nested design is the product of the
number of levels in each factor. This number may be too large. As an
alternative, in nested step designs there are as many sub-designs as factors plus
one last sub-model used for error estimation. In each sub-design the branching is
done only for the corresponding factor. The numbers of treatments is now the
sum of the factor levels plus one. Moreover the amount of information for the
different factors is more evenly distributed. We present a method to minimize
the sum of the estimated variances of the estimators of the variance components.
Key words: Random effects, variance components, nested factors, nested step designs,
optimization.

1. Introduction

In nested step designs (see Cox, Solomon, 2003) with u factors we have u+1
sub-designs. The usual balanced design has equal replication of all the levels that
occur, so there are fewer degrees of freedom for estimating o for low i. The
proposal here is use g, levels of factor 1, combined with a single level of all other
factors, to give vector Y,; then a new single level of factor 1, combined with a, new
levels of factor 2, combined with a single level of all other factors, to give vector P
and so on. In the last sub-model there is only one level for each factor nested inside
the level of the preceding factor. Only for this model we consider replicates.
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For u =3 we would have the design

Figure 1. Nested step designs

The number of level combinations is 1"'2::1 a, instead of, as in a balanced
nested design, Hj:l a, . Moreover, the number of observations will be a,,, + ZH a,

. u
instead of a,,, ><l"[j=l a;.

Thus the number of factor levels can be much higher then in the balanced case.
This is important mainly for the first factors. Besides this the information, as we will
see is distributed more evenly for all factors since we didn’t have a concentration on
the last factors as happen in the balanced case.

After presenting the model for step designs, we consider estimation and
hypothesis testing.

The parameters in the models for step designs are the number of factors, the
number of factor levels q,..,a, and the number of g, replicates. If we have a

variance component model for a step design we will be interested in minimizing the
sum of the variance of our estimates of the variance components.
In what follows /, will be the identity matrix of order m, and 1, the vector with

m components equal to 1. We represent by E(U) and ¥ (U) the mean vector and

covariance matrix of U. We write y~N (ﬁ,azM ), when y is normal with
E(Z) =u and Z(Z) =0’M ,and S~ yy? if S is the product by y of a central chi-

square with m degrees of freedom. Moreover we take Z?:. 1. =0, whatever the /,.
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2. Model

In each sub-designs the branching is done only for the corresponding factor.
The observations vector is

I
1

L=—u+1_]
with Yis Yos ws Yos Yurrs independent vectors for sub-designs.

For the sub-vectors we have the models
j-1

= .l.a,. Ht+ 2 :B i
i=l

where the ,Bj,,.~N(0,a'_2), i=1..,j-1, j=1.,u+1 and the ﬁ,-,»(aj)’“N[Qa,’O'izla,.],

u+l

+ Z.ﬂ_j,i(aj)’ Jj= L. ,u+l
i=j

i=j,.,u+l, j=1..u+1 are mutually independent. The error vector present in the

last sub-model will be ¢,,, =B, (a,,).Itis now straightforward to show that

u+l,u+l

E(Xj)=1aj,u, j=l.u+l
and

Z(2,)=0, Wil J=1u+l

with ¢, =Y "'o? and y, = Z“'a,, i=1,..,u+1. Thus

I, ——J

Z[/ 1 i |=J
a; ]

a a y =Wj

J

and so

th
I
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will be the product by y; of a central chi-square with a, -1 degrees of freedom,
Jj=1..,u+l, since [Ia} —Tl,-]a, ]Zj has null vector and /, —%Ja,_ is an orthogonal

projection matrix.

3. Inference

From
Sy~ NyXe s J=hesu+l

we get the unbiased estimators

Since

0'; =N "N Jj=Ll..u,
we obtain the unbiased estimators

G =V~ Frpp J=hentts
Moreover, we want to test

H, :0;=0, j=1..,u

against
H :00>0, j=1..,u
Now, with
ej 71,] ’ = 1,- »U
yl,j+l

these hypothesis can be rewriten as

H,,:0,=1 j=1..,u
H,:6,>1 j=1..,u
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We point out that
s, 2
a;-| a-+ -1 S _1 la
9}: Sj.: =1 ! J ~0j - N j=1,...,u
v a;-18§, a; "1 Zaj,,-l
with 6, =4, j=1,.,

u is the product by 6, of a variable with distribution F with

a,~1 and a,, -1 degrees of freedom. With F (z|r,s) a central F distribution with

r and s degrees of freedom and f,_,, the corresponding quantile for the 1-g¢
probability. The power functions of the tests with these statistics will be

Pot; (8) 1- F(e l-q,a,~1,a,,,-1| -La;, - 1], Jj=L..u

J

These statistics increases with 8,, j=1,...,u, so if we use them as test statistics,
the corresponding F tests will be unbiased

4. Optimization

Let 7,,...7,,, be positive estimators for the y,,...7,,,, obtained from pre-
sampling. We now intend to, through a proper choice of the q,,

ZVar( )= 22(:'2_1‘1 @}

a,-1

.»4,,a,,, , Minimize

where Var(&ﬁ) , j=L,..,u, is an estimate of & given the results of the pre-sampling.

We assume that Z:; (aj —1) =n, with n known, so we are led to use Lagrange
multipliers. Thus we will have the auxiliary function

22(:‘2_’1 a7"*‘ ]+l[§;(a -1)- }

L(al,...,au+|,/1)

J*

_ 7|l 71, }./l,u+l & .
= 4;‘1 a —l+l|: (aj 1) n}

u+l Jj=1
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To lighten the writing we take ¢, =a, -1, j=1,..,u+1, getting

. ( 72
oL _ A=224
0c, G

.2
-gclL:O A=4% j=2,...,u
J J
[
aL =O ﬂ,=2}}12"”]

acu-o,l C:ﬂ
a_L 0 utl
a/l j;cj—n=0

From the first three conditions we obtain

}/lj:>b 7]]
711 711 cl

b.2

b,iq 71u+1:>b"+l 71u+1 for b,.,

},l,l 7|,I cl

From the last condition we have

We know that ¢, ==, j=2,..,u+1, then using the previous results we get

nb; .
c; = M , J=2,,u+1.

1+Zb

Thus the a,, j=1,..,u+1, will be approximately proportional to 7.



Optimization of nested step designs 149

In what follows we will show one application of this theory:

Application:

Fa=533 7i,=3,45 7,=211 7,=109 #15=0,56

We obtain
Table 1. Results
n Var(o”'f) Var(&zz) Var(&f) Var(&f) a a as as as
100 0,6643 0,4297 0,3281 0,2763 25 29 22 16 8

During the development of this applications we use the fact of

71,1 > 7|,j+l) j=1,...,u.

5. Conclusions

We conclude with the following remarks:

. We point out that, j =7 -1J and 1J are mutually orthogonal projection

matrices. These matrices constitute a basis for a commutative Jordan algebra (see
Seely, 1971), the variance-covariance matrices of the sub-models belong to such
algebras.

. The possibility of negative estimators has been considered by many authors, for
instance see Nelder (see Nelder, 1954). The main inference to be had when we get

&1 <0 is that o7 must be null.

. Further work is intended to recover the degrees of freedom, one per sub-model,
that are wasted.

. The optimization considered in section 4 is a way of using the information in the
preliminary estimators when all are positive.

. The nested step designs turned out to be an valid alternative for the balanced
nested designs. Thus, we can work with less observations and the amount of
information for the different factors is more evenly distributed.
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